The influence of measurement error on calibration, discrimination, and overall estimation of a risk prediction model
نویسندگان
چکیده
UNLABELLED BACKGROUND Self-reported height and weight are commonly collected at the population level; however, they can be subject to measurement error. The impact of this error on predicted risk, discrimination, and calibration of a model that uses body mass index (BMI) to predict risk of diabetes incidence is not known. The objective of this study is to use simulation to quantify and describe the effect of random and systematic error in self-reported height and weight on the performance of a model for predicting diabetes. METHODS Two general categories of error were examined: random (nondirectional) error and systematic (directional) error on an algorithm relating BMI in kg/m2 to probability of developing diabetes. The cohort used to develop the risk algorithm was derived from 23,403 Ontario residents that responded to the 1996/1997 National Population Health Survey linked to a population-based diabetes registry. The data and algorithm were then simulated to allow for estimation of the impact of these errors on predicted risk using the Hosmer-Lemeshow goodness-of-fit χ2 and C-statistic. Simulations were done 500 times with sample sizes of 9,177 for males and 10,618 for females. RESULTS Simulation data successfully reproduced discrimination and calibration generated from population data. Increasing levels of random error in height and weight reduced the calibration and discrimination of the model. Random error biased the predicted risk upwards whereas systematic error biased predicted risk in the direction of the bias and reduced calibration; however, it did not affect discrimination. CONCLUSION This study demonstrates that random and systematic errors in self-reported health data have the potential to influence the performance of risk algorithms. Further research that quantifies the amount and direction of error can improve model performance by allowing for adjustments in exposure measurements.
منابع مشابه
Spatial prediction of soil electrical conductivity using soil axillary data, soft data derived from general linear model and error measurement
Indirect measurement of soil electrical conductivity (EC) has become a major data source in spatial/temporal monitoring of soil salinity. However, in many cases, the weak correlation between direct and indirect measurement of EC has reduced the accuracy and performance of the predicted maps. The objective of this research was to estimate soil EC based on a general linear model via using se...
متن کاملDevelopment of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection
The development of NIRS calibration model as a rapid, precise, robust, and cost-effective method to estimate oil content in ground seeds of worldwide safflower germplasm collection grown under different agro-climatic conditions was the key objective of this research project. The oil content was measured by accelerated solvent extraction method in a total of 328 samples collected across 2004 (16...
متن کاملA Novel System-Level Calibration Method for Gimballed Platform IMU Using Optimal Estimation
An accurate calibration of inertial measurement unit errors is increasingly important as the inertial navigation system requirements become more stringent. Developing calibration methods that use as less as possible of IMU signals has 6-DOF gimballed IMU in space-stabilized mode is presented. It is considered as held stationary in the test location incorporating 15 di...
متن کاملBayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function
In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...
متن کاملThe prospective validation of EuroSCORE II risk scoring system for patients underwent cardiac surgery: brief report
Background: Various prediction models have been developed aiming to estimate risk-adjusted mortality, morbidity and length of intensive care unit stay following cardiac surgeries. The European system for cardiac operative risk evaluation II (EuroSCORE II) is a prediction model which maps 18 predictors to a 30-day post-operative risk of death. The objective of this study was to evaluate the perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2012